728x90
반응형

1. 개설

SuperpaveSuperior Performing Asphalt Pavement에서 만들어진 아스팔 트 포장에관한 새로운 용어로서 아스팔트 규격과 선정방법 및 아스팔트 혼합물의 배합설계에 관한 일련의 체계이다.

미연방도로국(FHWA)에서는 기존도로시설에 대한 전반적인 효율성 제고와 유지보수에 관한 막대한 재정부담에 대한 해결책으로 1987년부터 1993 까지 전략적 도로연구사업(SHRP;Strategic Highway Research Program) 수행 아스팔트포장 분야의 중요한 성과중 하나가 Superpave이다

본문에서는 아스팔트의 새로운 등급체계, 아스팔트 규격 및 혼합물의 배합설계에 대하여 기술하고자 함

 

2. Superpave의 특성

.아스팔트 규격

1)실험정수 대신 물리정수 사용

기존아스팔트의 품질관리기준은 아스팔트의 점성적 특성에 주안점을 두고 행해져온 방법(침입도에 의한 방법, 점도에의한 방법 등)으로 침입도 6090은 전자가 후자보다 단단하다는 것은 알지만 물리적으로 무엇을 의미하는가는 명확치가 않다. 따라서 SHRP에서는 온도, 교통량 등의 조건을 만족시키위하여 물리정수로서 점도, 전단탄성계수, 위상각을 사용

2)공용특성의 예측

 

 

아스팔트는 온도에따라 성질과 상태가 크게변하며 고온에서는 아스 팔트 혼합물이 유동하고, 저온시에는 아스팔트 혼합물의 수축으로 저온균열이 발생한다.

따라서 SHRP에서는 각 현장의 온도에 적합한 아스팔트를 적절히 선택 하고 교통개방후의 포장파손을 적게할 목적으로 아스팔트의 규격을 새로이 정하였다

3)아스팔트의 등급

적정아스팔트를 선정하는데에는 기후조건뿐만 아니라 교통여건, 제품 공급능력과 경제성에 대한 검토가 필요하다.

SHRP에서는 포설되는 현장의 기상조건에따라 최저온도 범위를 설정 하여 다음과 같이 규격을 제안하고 있다.

-공용성 등급(PG, Performance Grade)

.고온등급은 PG 46-82까지 7등급으로 구분

.저온등급은 -10-46까지 7등급으로 구분

고온등급 저온등급

PG 46 (-) 34, 40, 46

PG 52 (-) 10, 16, 22, 28, 34, 40, 46

PG 58 (-) 16, 22, 28, 34, 40

PG 64 (-) 10, 16, 22, 28, 34, 40

PG 70 (-) 10, 16, 22, 28, 34, 40

PG 76 (-) 10, 16, 22, 28, 34

PG 82 (-) 10, 16, 22, 28, 34

 

3. 아스팔트혼합물의 배합설계

아스팔트 혼합물의 배합설계는 시험의 간편성과 과거 Data 축척이 많은 마샬안정도 시험에 의한 배합설계가 주류를 이루고 있으나 마샬시험은 마샬안정도와 아스팔트 혼합물의 물리적 특성과의 관계에 대하여는 명확 한 것이 아니라는 문제점이 있으므로 이러한 문제점을 보완하기 위하여 아스팔트 혼합물의 배합을 보다 합리적으로 결정하기위한 목적으로 조사 를 시행

1) 기본적고려사항

아스팔트 혼합물이 교통에 공용되면서 어떠한 파손이 생기는가를 배합 설계단계에서 검토하여 반영하고자 하는 것이 새로운 배합설계의 기본

검토항목

저온균열

피로균열

소성변형

혼합물의 제조시 및 기상에 의한 열화

수분에의한 손상

 

 

배합설계에서는 교통량에 따라 3단계의 배합설계 과정을 적용

구 분 누가등가 단축하중(ESAL) 평가방법

레벨1 100만대 이하 체적구성비율

레벨2 100만대-1,000만대이하 체적구성비율+공용성예측시험

레벨3 1,000만대이상 체적구성비율+확장공용성예측시험

2)아스팔트 혼합물의 규격

입도, 공극율, 골재간극율, 포화도, 수분의 영향으로 혼합물의 규격을 정함

-골재의 입도는 최대치수에따라 5(37.5, 26.5, 19, 13.2, 9.5mm)으로 구분

-최대치수에 따라 통과 백분율의 최대치와 최소치를 규정

-제한구역을 설정하고 골재의 합성입도는 이 제한구역을 통과하지 않도록하며 내 유동성의 혼합물을 만들기위해서는 제한구역의 아래쪽 을 통과하도록 한다

 

4.결 론

-교통량과 중차량의 급증으로 아스팔트포장의 파손이 증대하면서 현재의 아스팔트 혼합물 배합설계 방법으로는 소성변형의 공용성 문제를 해결할수없게되었으며

-이러한 문제점을 해결하기위하여 개발된 것이 SUPERPAVE로서 SUPERPAVE에서는 고온 및 중차량 조건에서 혼합물이 충분히 견딜수 있 도록 아스팔트 결합재의 물성을 강화하는 개념으로 공용성 등급에 의한 아스팔트 현장 적용시 소성변형과 같은 문제점을 상당부분 개선할수 있을것으로 평가된다.

-그러나 골재합성 입도의 검증이 제대로 이루어지지 않았고 새로운 아스 팔트바인다 시험이 현장에서의 공용성 모사를 할수있는지 등의 의문이 제기되고 있는 실정으로 국내에서도 기후환경 및 교통조건에 부합되는 SUPERPAVE의 도입을 위한 적용성 연구가 이루어져야 할것이다.

반응형
728x90
반응형

1.서론

-설계속도는 기후가 양호하고 교통밀도가 낮으며 차량의 주행조건이 도로의 구조적인 조건만으로 지배되고있을 때 평균의 운전기술을 가진 운전 자가 안전하고 쾌적성을 잃지않고 주행할 수 있는 속도이다

-설계속도는 차량에 영향을 미치는 도로의 물리적 현상을 결정하여 이들을 상호관련시키기 위하여 정해진 속도이다.

-직접관련 되는 요소는 곡선반경, 편구배, 종단구배, 시거 등이며 차선폭 길어깨폭 등 횡단구성 요소도 영향을 받는다.

-설계속도는 도로기하구조 결정의 주요요소로서 도로의 중요도, 기능, 교통량, 지형 및 지역여건에 따라 결정되며 도로의 성격, 경제성, 국가 의 경제부담 능력을 감안 결정

-주행속도란 차량이 측정대상구간을 통과하는데 소요된 평균속도로서 설계속도의 약 85%정도

2. 설계속도와 주행속도

. 설계속도

1)설계속도는 측정이 불가능한 속도

2)설계속도는 기후가 양호하고 교통밀도가 낮으며 차량의 주행조건이 도로의 구조적인 조건만으로 지배되고있을 때 평균의 운전기술을 가진 운전자가 안전,쾌적하게 주행할수 있는 속도

3)설계속도의 값 : 도로의 성격, 지역(도시,지방)에 따라 구분

구 분              고속도로     주간선도로     보조간선도로     집산도로

지방지역  산지      100               60                  50                 50

              평지      120              80                    70               60

도시지역              100              80                  60                50

 

 

4)설계구간

-설계구간이란 도로가 존재하는 지역 및 지형 상황과 계획교통량에 따라 동일한 설계기준을 적용할수 있는 구간이며 동일한 도로구분을 적용하는 구간

.설계구간 길이 : 20-30Km

.부득이한 경우 설계속도10-20Km감한구간 1-2개소 존재

.설계속도 20Km 감속시 10Km씩 점차적으로 줄임

.설계속도차가 20Km넘는 구간의 접속은 피할것

.설계구간의 변경점 : 무의식적으로 상황감지가 가능한곳(IC,터널등)

. 주행속도

1)주행속도는 측정이 가능한 속도임

2)측정대상구간의 길이를 먼저측정하고 차량이 구간을 통과하는데 소요되는 평균주행시간을 관측한후 길이를 주행시간으로 나눈값

-평균주행속도 =n×L/ti

3)평균주행속도는 설계속도의 약85% 정도임

3.설계속도와 기하구조와의 상관성

.평면선형

1)평면선형의 곡선반경과 이론적배경

횡방향 미끄럼이 일어나지않는 조건

Z=원심력(GV²/gR)

i=편구배

G=차량무게

f=횡방향 마찰계수

V=설계속도

-유도식

Zcosα-Gsinα=f(Zsinα+Gcosα) 양변을 cosα로 나누면

Z-Gtanα=f(Ztanα+G) tanα=i이므로

Z-Gi=f(Zi+G) G=V²/gR 이므로 대입하여 정리하면

R=V²/127(f+i) ------------------------(1)

곡선반경과 편구배는 식(1)에의거 반비례의 상관성

최소곡선반경은 f=0.1-0.16적용 산출 바람직한 값은 f=0.05적용

2)최소곡선길이: L=vt=v/3.6*t(t=4)

3)직선의 길이:독일기준

-최대길이:20v

-최소길이:2v(다른방향으로 굽은 곡선사이 길이)

-같은방향 곡선사이 길이 :6v

4)완화곡선

-80Km/h이상 :완화곡선, 80Km/h이하 완화구간 설치

5)완화곡선길이

-최소길이: L=vt(t=2)

-생략가능곡선반경: L=0.064v(이정량 20cm이하) 계산값에3배정도적용

.100Km/h: 2000m, 120Km/h: 3000m

.종단선형

 

 

1)종단구배(표준)

-중량대마력비가 225lb/hp 표준트럭이 허용최저속도로 주행할수 있는 구배 길이

.허용최저속도:설계속도 80Km/h이상 60Km/h

" " 미만설계속도-20

2)부득이한 경우 종단구배 : 표준종단구배 2-3%더함 이때 구배제한장 적용

3)종단곡선

-충격완화에 필요한 종단곡선 길이와 변화비율

L=v²*l/360, K=v²/360

-시거확보에 필요한 종단곡선 길이 및 변화비율

.볼록형: K=S²/385

.오목형: K=S²/120+3.5S

-최소종단곡선장 : L=vt(t=2)

.시거

1)시거에는 정지시거,추월시거,피주시거 등이 있으나 이중 정지시거

가 기하구조 결정에 가장기본적 요소

2)정지시거:운전자가 장애물 인지후 정지할수 있는 거리

D=vt/3.6 + 1/2gf(v/3.6)²

.도로폭, 길어깨폭, 완화구간장도 설계속도에따라 서로다른값 적용

구 분                   도로폭             길어깨폭             완화구간장

80Km/h이상            3.5m                2-3m              q=1/150-200

60-80미만              3.25m              1.75-2m           q=1/125-150

60미만                  3.0m                 1.25m             q=1/125이하

.기타

중분대개구부 길이,가감속차로 연장 등

 

4.결론

-선형설계의 제조건은 안전하고 쾌적한 주행을 확보하며 교통류를 원활 하게 소통시키므로서 사고예방과 용량저하를 막고 시간 및 주행경비면 에서 경제적 손실방지

-차량이 곡선부를 주행할 때 원심력에 의한 차량의 미끄러짐이 작용하게 되므로 이를 일정한도이하로 하여 안정성과 주행쾌적성을 유지

-원심력의 한도는 차량의 주행속도와 도로의 곡선반경, 편구배, 노면의 횡방향 마찰계수에 좌우되며 이외에 종단구배, 시거, 도로폭 및 길어깨 폭과 부대시설에 따라 달라진다.

-속도와 기하구조는 서로 밀접한 상관관계가 있으며 이는 도로용량에 큰 영향을 미치므로 적정한 조화로서 도로의 통행에 안정성과 쾌적성 및 용량을 증대시켜야 할것이다.

반응형

'도로및공항 기술사 > 기하구조' 카테고리의 다른 글

기하구조 - 용어정리  (0) 2020.11.30
입체교차로 설계  (0) 2020.10.02
연결로 설계  (0) 2020.07.30
IC(나들목) 위치 및 형식  (0) 2020.07.30
평면교차로 설계  (0) 2020.07.29
728x90
반응형

1. 서론

우리나라 건설공사사업은 고속철도, 인천신공항 건설사업등과 같은 대규모 단일사업과 도로건설, 하천치수, 지역개발사업과 같이 동일 목적 또는 유사공종의 단위사업들을 한데 묶은 집단(Package)사업으로 구분할수 있음.

공공사업의 시행에 대하여 건설기술관리법에 건설공사의 계힉, 설계 시공, 감리, 유지관리 등이 상호 유기적으로 이루어져야 한다라는 선언적 규정은 있으나 구속력이 없고 장기종합계획 또는 예산편성과의 연계, 단계별 세부사항에 대한 규정이 미흡하여 공공사업 시행의 절차가 적정하게 이루어 지지못하고 있는 형편

2. 공공건설사업 시행의 적정 절차 확립 방안

 

 

. 현황 및 문제점

1)합리적인 사업절차를 무시한 사업추진으로예산낭비와 부실공사 야기

2)부적절한 사업시행 절차유형 및 사례

- 장기종합계획에 기초하지않고 정책적배려에 의한 사업을 선정하거

나 타당성조사시 의도적으로 과다한 수요를 예측하여 사업의 타당성을 합리화

-설계도 완료되지않은 상태에서 착공하거나 과소책정된 사업비를 토대로 예산을 요구 시행하는등 실적쌓기식 사업추진

-보상비와 건설비가 동시에 예산배정됨으로써 보상이 지연되고 보상지연에따른 수급업체부담가중 및 전체사업비 증액

-사업투자우선순위등 종합적인 기본계획이 미비하여 정치권 요구에 의한 사업선정 빈발

. 개선방안

1)사업시행절차의 표준화 및 법제화

공공사업의 기본구상 단계에서부터 사업시행, 사후평가 단계에 이르기까지 전과정에 관한 절차를 표준화.법제화

예비타당성조사 단계를 새로이 도입 타당성 높은 사업만 추진

예비타당성조사 결과 타당성 조사의 필요성이 인정되면 추진

 

 

견실시공과 경제적인 공정관리에 필수 요소인 설계내실화를 기하기 위해 기본설계를 실시한후 실시설계를 시행

사업시행 절차를 이행한 사업은 사업계획 또는 실시설계에서 제시된 기간내 완공가능하도록 예산편성 의무화

공사에 필요한 각종 인허가와 용지보상이 일정수준 이상 완료된후 시공토록하는 선보상 후시공을 제도화

2)사업시행 절차(대규모 단일사업기준)

- 기본구상 예비타당성조사 타당성조사 *사업계획 기본설계 실시설계 예산편성 계약 인허가 보상 공사시행 사후평가 유지관리

* ) 집단사업의 경우 : 사업계획 단계에서 종합기본계획수립

3. 결론

- 지역개발 욕구가 강한 지역과 정치권의 반발예상

대응 : 그동안 불합리하게 결정된 사업선정과 추진으로 국가재원이 낭비된 사례를 보여주며 설득

- 사업시행 절차의 경직성으로 여건변화에따른 탄력적 대처 곤란

대응 : 불가피한 경우에 한하여 예외 인정

반응형
728x90
반응형

1. 서론

- 정부는 시급한 SOC 확충등을 위해 공공건설사업에 매년 막대한 재원을 투입하고 있으나 졸속한 사업추진으로 인하여 많은 예산을 낭비하고있어 공공부문 개혁차원에서 사업의 효율화가 시급한실정

. 국가.지자체 등에서 연간 약40조원 투자(GDP8%)

. 사전조사미흡으로 잦은 설계변경 및 공사비 낭비

. 선심성 예산편성으로 재정운용의 비효율 및 사업 장기화

- 따라서 예산을 절감하면서도 품질은 확보할 수 있는 범 정부차원의

공공사업 효율화 종합대책의 필요성 대두

- 앞으로 종합대책을 강력히 시행함으로써 공공사업의 저비용 고효율 달성

2. 공공건설사업 효율화 종합대책

. 공공건설사업 추진의 문제점

1)신중하고 치밀한 사전준비없이 사업의 졸속추진

- 경부고속철도 : 노선,차종,지하화 여부 등이 결정되지도않은 상태 에서 무리하게 사업착수

. 사업비 3배증가 : 5.818.4

. 완공6년지연 : ‘91’98‘922004

2)타당성조사의 공정성 객관성 부족

 

 

- 사업기관이 직접 타당성조사를 주관함에 따라 공정성 및 책임성

결여 : ‘94이후 실시사업 33개중 타당성이없는사업 1

- 수요를 부정확하게 예측 투자의 효율성 저하

- 조사기관마다 조사항목 및 평가기준등이 상이하여 신뢰성 부족

- 설계비, 설계기간 부족으로 부실설계 양산

. 선진국에 비하여 설계비는 60%, 설계기간 50% 수준

3)많은 사업을 방만하게 분산투자함으로써 국민,정부,업체모두 피해

- 서해안고속도로의 경우 적정공기 6년이나 예산은 12년 편성

- 국도건설등 총액사업은 공개된 투자우선순위 없이 지나치게 많은 사업에 분산투자

. 국가지원지방도 : 공구당 연간 200-300억원의 예산투자 적정하나 평균 40억수준 투자

4)용지 미확보 상태에서 착공하고 불합리한 보상기준 및 절차로

늑장 및 과다 보상 초래

- 공사시행중 용지보상 병행으로 민원유발 및 공사중단.지연 사례

- 실농보상 및 어업보상 등의 보상기준 과다책정

- 수용재결절차 복잡 및 장기간 소요

- 감정평가료가 땅값에따라 정해짐으로써 과다평가 조장

5)건설공사 입찰시 담합 또는 덤핑이라는 양극화된 불공정 거래관행 만연으로 예산낭비 및 부실공사 초래

-대형공사 2/3가 예정가격 90%이상(‘97-’98.8)

-‘98.8이후 2/370%이하 저가낙찰

6)담합과 덤핑을 근절할수 있는 선진국형 기술력위주의 입찰제도 활용 미흡

-턴키.대안 입찰비율이 ‘9728%에서 ’9818%로 감소

7)발주기관 지위남용, 민간업체 부담가중

-정당한 업체요구 무시, 민원처리비용, 기공식 행사비용 업체전가

-발주기관의 과도한 규제로 사업수행상 비효율 초래

8)전근대적인 공사관리체제 답습

-결과중심적 관리행태 만연

-시공자, 감독자, 설계자의 책임소재 불분명

9)정보화, 표준화가 미흡하고 비용절감 유인이 부족

-정보화, 표준화 미비로 건설산업 생산성 한계

-우수한 대안제시에 대한 인센티브 제도 활용 미비

10)공공사업에대한 사후평가제도가 없어 문제점이 은폐되고 유사

사업 추진과정에서 동일한 시행착오 반복

. 공공사업 효율화를 위한 개선방안

1)기획,설계분야

-합리적 체계적 사업절차를 확립 준수

.대규모사업은 적정절차를 순차적으로 거치도록 의무화

.선행단계를 거치지않은 사업 후속단계 예산배정 금지

-예비타당성조사 제도도입

.500억이상 사업은 예산당국과 발주기관 공동으로 예비타당성 조사 실시

-타당성조사의 실효성 확보

.타당성조사 표준지침마련 조사기관별 편차해소

.설계시 공사비가 타당성조사시 정한 일정비율이상이면 타당성 재검증 : 의도적 조사오류에 대한 제재강화

-실시설계 내실화

.충분한 설계비와 설계기간 부여

.부실설계 업자 및 기술자 감점 및 손해배상 등 엄중제재

.초기 기본설계 비중을 높여 사업장애요인 사전점검 : 기본설계

비중을 30%50%로 높여 상세설계

.설계VE(Value Engneering)제도 도입 및 LCC(Life Cycle Cost)

검토 의무화

 

 

2)예산편성 및 집행분야

-무분별한 신규사업 억제장치 마련

.개별사업간 우선순위 미리수립하여 다음에 시행할 사업예시

.사업종류별 및 규모별 신규사업 착수년도 예산배정 하한선 규정

-완공위주의 집중적인 예산투자

.신규사업의 예산배정 완료시한 명시 계획기간내 사업완료

.계속비 예산편성을 점진적으로 확대

3)보상분야

-선보상 -후시공 원칙 제도화

.보상비는 사업초기 집중배정 통합운영

.보상전문기관 지정 활용

-보상기준 및 절차의 합리적 개선

.실농보산 및 어업보상 기준의 합리적 조정

.수용재결절차의 간소화, 기간단축

.감정평가 수수료 체계 개선

4)입찰 및 계약 분야

-담합 및 덤핑이없는 공정경쟁체제 구축

.가격경쟁후 기술력 평가방식을 기술력 평가후 가격경쟁 방식으로 전환

.공사 이행보증제도 활성화

-기술력 위주의 경쟁활성화

.턴키.대안 입찰 제도 활성화

-공정하고 자율적인 계약문화 정착

.-관간 공정거래 질서 확립

5)시공.유지관리 분야

-건설분야 ISO 인증 확대

-EV(Earned Value)기법의 도입

-건설CALS 체제의 조기구축

-건설표준화 지속추진

-비용절감을 위한 기술개발 촉진

-기술개발 보상제도 활성화

-건설공사 실명제

-사후평가 의무화

 

 

3. 결론

-공공건설사업의 효율적 추진을 위하여

.기획,설계단계에서부터 예산배정, 입찰 및 계약, 보상, 공사관리까지

의 전분야에 걸쳐 제도개선과 의식의변화가 필수적임

.효율화 추진대책을 추진하는 사항에는 법률의 개정을 포함한 각 부처간 긴밀한 협조가 필요함으로

.구체적인 실행계획을 수립하고 추진상황의 점검 및 평가시스템을 구축하여야 하겠음.

-아울러 공공사업 효율화 대책에 대한 국민의 공감대 형성 및 추진의

정당성 확보를 각계 각층의위한 여론수렴 절차와 홍보대책 마련 필요

반응형
728x90
반응형

*최근 도로및공항 기술사에는 출제되지 않는 문제이긴하나, 참고하시면 기술자로서 도움이 될듯 합니다. 

 

. 개 요

1. 포장두께지수(SN)

- 교통조건(W8.2), 노상조건(SSV), 환경조건(Rf), 서비스 지수(Pt)를 입력하여

- 관계식 또는 설계도표를 이용하여 결정

2. 포장두께지수(SN)는 층별 상대강도계수(ai)와 층별 두께(Di)의 함수로 표시됨.

 

 

. 포장두께지수(SN)의 산정방법

1. '72 AASHTO 잠정지침 설계법

SN = a1D1 + a2D2 + a3D3

여기서, SN : 포장두께지수

a1, a2 ,a3 : 각 층별 상대강도계수

D1, D2, D3 : 각 층별 포장두께

2. '86 AASHTO 설계법

: 배수계념 도입

SN = a1D1m1 + a2D2m2 + a3D3m3

여기서, m1, m2, m3 : 각층별 배수계수

3. 설계포장두께 산정

 

. 개선사항

1. 국내의 지젹조건 및 포장재료조건에 적합한 ai에 대한 시험치의 정립 필요

2. mi(배수계수)의 실측치 적용 필요

3. 국내 포장재료의 역학적 거동에 대한 실험연구 수행 필요.

반응형

'도로및공항 기술사 > 포장' 카테고리의 다른 글

Superpave  (0) 2020.09.22
상대강도계수  (0) 2020.08.20
지역계수 (Rf)  (0) 2020.08.07
등가단축하중계수(ESALF : Equivalent Single Axle Load Factor)  (0) 2020.08.06
미끄럼방지포장 설치  (0) 2020.08.06
728x90
반응형

. 개 요

1. 포장은 교통하중, 자연조건, 혼합물의 노화 등에 의해 공용성이 저하되며,

공용성 저하는 주행성, 안전성, 쾌적성을 저하시켜

결국에는 원활한 교통흐름에 지장을 주게 되므로 신속한 유지보수가 요구됨.

 

2. PMS : Pavement Management System),

- 도로포장의 유지보수에 소요되는 막대한 예산을 효율적으로 집행하기 위하여

- 적절한 포장평가방법을 통해 구간별 유지보수 우선순위를 결정하고

- 최적의 보수공법을 제시하는 의사결정체계를 말한다.

 

3. 여기서는 포장의 파손을 일으키는 원인과 PMS 관점에서의 포장유지보수 방법 및 유지보수 최적화 방안에 대하여 기술코자 한다.

 

 

. 포장파손 형태 및 원인

1. 파손형태

. 균 열 : 미세균열, 선상균열, ,횡단균열, 시공조인트 균열

. 단 차 : 구조물 부근의 요철로 다짐부족에 의한 부등침하

. 변 형 : 소성변형, 종단변형 요철, 코루케이션, 침하, 범프, 플라쉬

. 마 모 : 라벨링, 폴리싱, 스케일링

. 붕 괴 : 포트홀, 박리, 노화

. 기 타 : 타이어자국, 흠집, 표면 부풀음

 

2. 원 인

. 젖은 골재나 입경이 큰 골재사용

. AP량 부족 또는 과다, 노화 AP사용

. AScon 과열

. Prime Coating, Tack Coating양 부족 또는 과다

. 과다한 교통하중

. 포장두께 부족

. 지하수 영향(침투수에 의한 박리현상)

. 기층 이하의 지지력 부족(보조기층의 변위증대)

. 동상방지층의 두께 부족

. 다짐부족(공극율 과대)

 

 

. PMS관점에서의 유지보수 방법

1. PMS의 개념

: 포장의 보수만을 단독으로 생각하지 않고,

계획부터 유지보수까지 전체개념으로 생각하여 유지관리하는 포장의 관리체계

 

2. Life Cycle에 의한 보수시기 결정

. Life Cycle의 개념

- 포장의 수명은 신설초기부터 파손까지 일정한 Cycle에 의해 그 수명을 다한다는 이론

. Life Cycle에 의한 보수시기 선정

: Life Cycle에 의해 포장파손전에 공용성을 회복할 수 있도록 보수시기 선택


3.
노면평가를 통한 유지보수공법 결정(포장의 Life Cycle)

. 노면의 평가

1) PSI 평가(공용성지수)

- AASHTO 도로시험결과에 따라 PSI적용

- 균열을 중요시 하며 균열율, 요철, 소성변형의 함수

- PSI 1.0 : 재포장

PSI = 1.1 2.0 : Overlay

PSI = 2.1 3.0 : 표면처리

 

 

2) MCI 평가(유지관리지수)

- 일본 건설성의 개발모형으로

포장의 공용성을 노상 특정층에 의한 수치로 표시

- 소성변형을 중요시

- MCI 3 : 재포장

MCI 4 : 보수요

MCI 5 : 이상적인 관리상태

. 보수공법의 선정

: 포장파손 형태의 대부분인 요철량과 균열율에 의한 공법선정



. 결 론

1. PSM의 도입효과

: 객관적이고 합리적인 근거에 의한 유지보수 즉 예방적 유지보수의 실시를 통한,

1) 도로예산의 효율적인 집행

2) 항상 적정 수준의 포장상태 유지

3) 적기 보수에 의한 포장수명의 연장 등의 효과가 있다.

2. 정부에서는 '86년도부터 전국 국도에 대한 PMS를 도입하여 유지보수계획의 수립 및 예산정책에 이용하고 있으며,

현재 고속도로에 대한 PMS도 개발중에 있다.

3. 조속한 시일내에 고속도로, 국도, 지방도 뿐만아니라, 지지체에서 관리 운영하는 도로에 대하여도 적절한 PMS를 도입되어 합리적이고 체계적인 포장관리가 이루어져야 하겠다.

4. 아울러 각종 도로들에 대한 PMS자료의 수집 및 분석을 통한 연구활동이 활성화되어 포장설계, 시공, 유지관리의 기술발전을 도모하여야 하겠다.

반응형
728x90
반응형

. 개 요

1. 도로포장은 연성포장인 아스팔트 포장과 강성포장인 콘크리트포장으로 구분.

2. AP포장은 Con'c포장에 비해 시공성 및 주행성면에서 많은 장점을 지니고 있으나, 최근 차량의 대형화, 교통지체, 온도상승 등으로 심각한 소성변형의 문제가 발생 내유동성 내구성이 우수한 AP혼합물이 절실히 요구되고 있다.

3. 과거 아스팔트 포장에서의 변형문제포장층 각층의 침하문제해석되었으나, 현재는 아스팔트 혼합물의 유동성에 의한 소성변형 문제가 주요 원인으로 부각.

4. AP혼합물의 물성을 향상시키는 방법으로는,

. 개질재를 사용하는 방법

: 기존 아스팔트의 단점인 소성변형, 균열등의 문제점을 개선하기 위하여 각종 혼화재(개질재)를 첨가하는 아스팔트 포장

개질재(Modifer) : 필터, 고무, 플라스틱, 섬유 촉매제 등

. 골재 맞물림 효과를 증진시키는 방법(SMA포장)

: AP자체이 성능개선보다는 골재간 맞물림효과를 극대화하여 중차량에 대한 밀림(소성변형)을 최소화하고, 균열방지를 위해 천연섬유를 첨가한 AP혼합물 등의 방법이 있으며,

5. 여기서는 현재 국내 적용성이 우수한 것으로 평가되고 있는 SMA포장의 특성, 재료의 품질기준, 외국의 적용현황에 대하여 알아보고자 한다.

 

 

. SMA (Stone Mastic Aasphalt) 포장

1. 정 의

: 골재간 맞물림효과를 최대로 하여 소성변형의 발생을 최소화하고,

AP혼합물에 천연섬유를 첨가하여 골재의 탈리 및 균열을 최소화한 아스팔트 혼합물


2.
특 성

. 고온 및 중차량조건에서 소성변형에 대한 저항력 우수

. 섬유소의 역활로 균열발생 및 골재 탈리현상 최소화

. 표면 피륙조직이 거칠기 때문에 마찰저항성 우수

. 소음감소효과

. 기존포장보다 공용수명 연장(2-3) 기대

3. 생산 및 시공

. 일반 혼합물과 동일.

. 단 전압시 타이어 로울러는 사용 안함.

 

 

. 재료의 품질기준

1. 아스팔트 : AP-5 사용(침입도 등급 6070)

2. 골재

. 굵은 골재 : 마모감량 30%이하의 것 사용

. 잔골재 : 자연 모래 사용 않함.

3. 섬유 첨가재

. 식물성 섬유(셀룰로오스) + 일정량 아스팔트 = 낱알 형태로 생산한 것을 사용.

. 섬유 투입량 : 혼합물 무게의 0.3%를 표준

4. 혼합골재의 입도기준

: 공칭최대치수 - 13mm

5. 일반 AP혼합물과의 품질기준 비교

항 목

일반혼합물(WC1-4)

SMA

AP함량(%)

공극률(%)

마샬 안정도(kg)

휠트래킹에 의한 동적 안정도(/mm)

5.8

3.0 6.0

750 이상

1,050

6 이상

2.5 4.0

500 이상

3,300

 

. SMA 적용현황

1. 독 일

. 1968 처음 개발

. 1984 독일의 표준포장공법으로 채택

. 유럽전역에 이 공법이 적용되고 있으며,

. 시공실적으로는 유럽지역에서만 약 160,000,000가 기시공 되었음.

2. 미 국

. 1990 연방도로청 차원에서 도입.

. 1994년말 현재 20개주 이상에서 SMA 공법을 도입하여 사용중에 있음.

3. 우리나라

. 1992 SMA공법의 국내적용방안에 대한 연구 시작

. 1995 남해고속도로(양산-구포간 1공구), 경부선(, 57km)에 시험시공되었으며,

. 1997 중앙설계심의위원회를 통과, 현재 설계 및 현장에 확대적용되고 있다.

 

. 결 론

 

 

1. SMA포장은 종전 밀입도AP콘크리트(WC-3)와 비교해 볼때

. 경제성측면에서는 불리하게 작용되나,

. 공용성 내구성에 대한 평가 결과

- 중차량에 의한 소성변형의 저항성이 크고

- 내구성이 우수한 것으로 평가되고 있으며,

2. 확대적용을 위해서는 다음사항들이 검토되어져야 한다.

. SMA포장의 초기공사비가 일반 WC-3에 비하여 75%가량 고가이므로,

유지관리비용을 감안한 수명-주기비용(LCC)에 대한 비교검토 필요

. SMA포장 적용구간을 위한 조건공사비 산정기준 마련

. SMA포장단면 설계를 위한 상대강도계수(ai)값 제시

반응형
728x90
반응형

. 개 요

1. 시멘트 콘크리트포장은

- 포틀랜드시멘트를 주재료로하여,

- 콘크리트 슬라브 자체교통축하중휨저항으로 지지하는 포장공법으로,

 

2. 종류에는

. 무근콘크리트 포장(Jointed Concrete Pavement)

1) Dowel Bar가 있는 포장

2) Dowel Bar가 없는 포장

. 철근콘크리트 포장(Reinforced Concrete Pavement)

1) 단경간 철근 콘크리트 포장(Jointed Reinforced Concrete Pavement)

2) 연속 철근 콘크리트 포장(Continuoused Reinforced Concrete Pavement)

. P.S 콘크리트 포장(Prestressed Concrete Pavement)

. 다짐 콘크리트 포장(Roller Compacted Concrete Pavement)로 구분할 수 있다

3. 본고에서는 JCPCRCP의 특성비교

 

 

. Jointed Concrete Pavement

1. 개 요

- 일체의 철근이 없는 포장형식으로

- 콘크리트의 경화, 건조수축, 온도변화 등의 영향으로 발생되는 Crack을 줄눈으로 유도하는 형태의 포장

- 우리나라에서 가장 보편화되어 있는 콘크리트 포장공법임.

 

2. Joint의 설치

. 세로줄눈(Longitudinal Joint, Tie Bar Joint)

1) 주 기 능 : Warping Stress 감소, 세로균열 방지

2) 설치간격 : 4.5m 간격, 주로 차선에 설치

3) 줄 눈 : 1차선포설시 - Tie Bar를 이용한 맞댄줄눈

2차선포설시 - 맹줄눈

4) Tie Bar : L=80cm, CTC=75cm, Φ=16mm

 

 

. 가로수축줄눈(Transverse Contraction Joint)

1) 주 기 능 건조수축, 온도변화에 의한 수축균열을 한곳으로 유도

온도차이에 의한 비틀림응력 감소

2) 설치간격 : 610m 간격

(Slab두께, Slab보강여부, 온도변화량, Slab마찰저항에 따라 결정)

3) 줄 눈 맹줄눈, 맞댄줄눈(시공Joint와 겹칠때)

4) Dowel Bar : L=50cm, CTC=30cm, Φ=25mm이상

 

. 가로팽창줄눈(Transverse Expansion Joint)

1) 주 기 능 Slab온도로 인한 팽창시 축방향 압축응력 경감

Blow up 압축파괴 방지

2) 설치간격 60240m(480m) 간격(시공시기 및 Slab두께에 따라 결정)

경험적으로 구조물접속부 이외엔 설치하지 않는 추세임.

Slab 두께

105

69

1520cm

60120cm

120240cm

25cm 이상

120240cm

240480cm

3) Dowel Bar : L=70cm, CTC=30cm, Φ=25mm이상

 

 

. Continuoused Reinforced Concrete Pavement

1. 개 요

. 무근 콘크리트포장의 단점인 줄눈파손의 문제점을 해결하기 위해

가로줄눈을 없앤 구조

. 콘크리트 슬라브에서 발생되는 Crack을 연속철근으로 억제하는 형태의 포장구조

2. 포장구조

. 슬라브 두께 : JCP 또는 JRCP와 동일

. 종방향 철근(0.5%) 횡방향철근(0.08%) 설치

. 종방향 철근의 연속배근

. 단부처리

1) CRCP의 처음과 끝은 자유단에 단부처리

2) 단부처리는 팽창을 억제하도록 앵커 또는 신축장치 설치.

- Anchor : 5-12m 간격으로 2-6개씩 설치

- 신축장치 : 일반적으로 Wide flange-Beam 단부이음을 설치

 

3. 문제점

. Slab두께 철근량 산출에 확실한 이론적 근거가 없다.

. 포장수명이 다했을 때 보강방법 포장처리 방법 부재

. 숙련된 고급인력 미확보

. 철근부식에 대한 방지책 부재

 

 

4. 대 책

. 구조체의 해석과 설계에 대한 합리적인 이론적 근거 마련

. 휨강성 보강철근의 구조적 작용을 설계과정에서 구체화

. 중차량 재하상태 등의 조건하에서 합리적인 해석법 연구

 

. 결 론

1. 콘크리트포장 도입당시 CRCP(중부, 88)를 주로 사용해온 국내 시멘트 콘크리트 포장은 설계, 시공면에서 상당한 진전을 이루었다.

2. 현재 콘크리트 포장은 JCP를 주로 사용하고 있으며 줄눈파손에 대한 연구가 필요함.

3. 향후 승차감, 평탄성, 소음, 진동에 대한 문제개선, 줄눈재 및 콘크리트 품질 개선, 시공장비 현대화 등에 대한 보다 적극적인 노력이 필요함.

 

반응형
1···3456789
반응형

+ Recent posts