728x90
반응형

. 정의

에어사이드 설계의 가장 중요한 요소인 활주로 길이는 표고 및 기온, 구배에 따라 달라지므로 엘레베이션, 기온, 구배특성을 반영하여 평균해수면 기준, 표준대기상태로 변화시킨 것이 Basic Runway Length이다. 활주로 기본길이를 알면 특정 지역의 활주로의 설계길이로 환산할 수 있다.

 

. 활주로 기본길이의 산출

Fe : 표고보정계수

Ft : 온도보정계수

Fg : 구배보정계수

Aeronautical lnformation Publication(AIP). 항공 정보 간행물(ICAO)

공중 항행에 대한 최근의 특성 요소의 항공 정보를 포함하는, 정부에서 발행한 출판물.

 

IMC. 계기 기상 상태

Instrument Meteorological Condition.

계기 기상 상태를 지칭하는데 사용되는 기호

 

 

IMC Approach.lMC 진입

IMC 기후 동안에 ILS, VOR 또는 다른 보조 시설을 이용한 계기 진입

 

IMC Control.IMC 관제

IMC 기후 동안에 이용되는 항공 교통 관제 절차로서 레이다에 의하거나 그렇지 않은 관제 모두를 말한다.

 

Area Navigation(RNAV). 지역 항행

station-referenced 항행 신호의 포함 범위내에서 또는 self-contained system 능력내에서 모든 원하는 코스상으로 항공기의 운항을 허용하는 항행의 방법. 무작위 지역 항행 항로는 경위도 조합, 각도/거리 고정점이나 간행물로부터의offset의 용어로 정의된 항로 지점들 또는 규정된 거리와 방향에서 설정된 항로들간의 지역 항행 능력에 근거한 직항로이다. 주요 장비 종류는 다음과 같다.

1. VORTAC

VORTAC은 사용상. RNAV의 최대 수치를 계산하는 Course Line Computer(CLC)체계를 참조로 한다. 기능상 CLCVORTAC의 지원 범주내에 있어야 한다.

2. OMEGA/VLF

이 장비는 비록 두개의 분리된 시설이지만 하나의 운영 체계로 간주될 수있다. 전세계 총 17개 국으로부터 전송된 초저주파 (Very Low Frequency,VLF) 무선 신호에 근거한 장거리 항행 체계이다.

3. Inertial(INS) System

이 장비는 모든것을 자체적으로 보유하고 있으며 외부의 관련 시설로부터 정보를 필요로 하지 않는다. 이것은 장비내 부품의 내부 간십으로부터 발생하는 신호의 응답에서 항공기 위치와 항행 정보를 제공한다.

4. MLS Area Navigation(MLS/RNAV)

이 장비는 MLS 지상 시설을 기준으로 하여 지역 항행을 제공한다.

5.LORAN-C

이 장비는 항로와 진입 표고 모두에 6001,200 해상 마일까지의 범위에서 사용자에게 위치 정보를 제공하고자 저주파로 전송된 지상 파장을 사용하는 장거리 항행 체계이다. 이용 가능한 신호 유효 지역은 신호-잡음비, 포위-선회 차이 및 사용자의 위치와 전송국간의 지형적 연관성에 의하여결정된다.

 

 

 

Runway Visual Range(RVR). 활주로 시계 범위

활주로 중심선상에 있는 항공기의 조종사가 활주로의 윤곽을 나타내거나 그중심선을 증명하는 활주로 표면의 표지나 등화를 식별할 수 있는 범위. 또는 활주로 가시 거리 즉 이륙 이나 착륙 방향의 수평 가시 거리를 말하며 RVR측정 장치의 약어로 사용되기도 한다. RVR에 따라 VFR, IFR 비행이 결정되며 IFR에서도 카테고리 구분이 이루어진다.

(Visibility를 볼 것)

 

ICAO - Visibility. 시정

낮에 눈에 띄는 비발광 물체와 밤에 눈에 띄는 발광 물체를 보고 확인하기 위한, 거리 단위로 표현되고 대기 조건에 의하여 결정되는 능력

- Flight Visibility

비행중에 있는 항공기의 조종석으로부터 전방의 시정

- Ground Visibility

관측소로부터 보고된 것과 같은 비행장에서의 시정

- Runway Visual Range(RVR)

활주로의 중심선상에 있는 항공기의 조종사가 그 중심선을 확인하거나 활주로의 윤곽을 묘사하는 활주로 표면 마킹이나 등화를 볼 수 있는 범위

 

Aircratt Classification Number(ACN). 항공기 분류 번호

규정된 노상 카테고리에 대하여 포장상에 있는 항공기의 상대적 영향을 나타내는 번호.

 

Pavement Ciassification Number(PCN). 포장 분류 번호

하중 제한이 없는 운항에 대한 포장의 지지 강도를 나타내는 번호

 

반응형
728x90
반응형

. 개요

공항설계시에는 대상 공항을 이용하게 될 항공기의 분류를 여러 방법으로 하게 되며 설계항공기의 분류는 공항설계에 있어 매우 중요하다. 항공기의 분류는 공항 각 분야의 설계대상 시설 및 각각의 사용목적에 따라 분류방법이 달라진다. 또한 ICAOFAA의 두 기관의 분류도 각각의 기준에 따라 달리 적용하고 있음을 주의하여야 한다.

 

. 항공기의 분류

1) 항공기 크기별 분류

활주로의 길이, , 활주로 분리간격, 유도로 분리간격, 비행장애, 각종 장애물 이격거리 등 공항의 기하구조를 설계하는 기준으로 이용하며 비행장내 장애제한구역의 설정 기준이다.

ICAO

항공기 제원과 관련하여 비행장 코드 분류를 정하였으며 활주로 길이별로 비행장 코드번호 1, 2, 3, 4로 날개폭 및 외측차륜 간격에 의해 비행장 코드 A, B, C, D, E로 분류한다.

FAA

항공기의 날개폭을 기준으로 항공기 설계그룹 , , , , , 6개 그룹으로 분류한다.

 

 

Airplane Operational Characteristics for FAA Airport Reference Coding System

 

2) 착륙속도별 분류

항공기의 이륙 및 착률 절차수립, 적당한 장애물 이격거리 산출, 고속탈출 유도로의 적정 위치 산출에 이용

항공기가 최대인가 착륙중량으로 착륙할 때 실속도 (체공가능한 최소속도로 stall speed라고 한다)1.3배의 속도로 활주로 말단을 통과한다고 가정하며 이 접근속도의 기준으로 FAA에서 진입카테고리 A, B, C, D, E 등의 5가지로 구분한다.

 

3) 중량별 분류

 

(1) 항공기 운항

항공기의 엔진에서 발생하는 후풍와류로 인해 항공교통 관제사는 특정조건하에서 특정등급의 항공기간의 분리간격을 달리 적용한다. 후풍와류의 크기는 항공기의 중량에 따라 달라진다.

 

(2) 활주로 길이

활주로 길이 산출에도 항공기 중량은 매우 중요한 요소이다.

최대 총중량이 6만 파운드 이하일 때는 진입속도에 따라 몇 개의 집단으로 분류하여 각 집단에 대하여 고려한다.

최대 총중량이 6만 파운드 이상일 때에는 특정한 비행기에 대하여 설계한다.

 

 

(3) 활주로의 용량

항공기 혼합율은 활주로 용량에 영향을 미친다. 이것은 4개 등급의 항공기가 각각 처리되는 상대적인 운항백분율이다.

 

(4) 공항의 포장

공항의 포장설계를 위하여 중량에 의하여 분류한다. 이를 위하여 미 공군에 의해서 light, medium, heavy, modified heavy, shortfield 등으로 구분한다.

 

4) 착륙장치 형태별 분류

(1) 포장설계

항공기의 총중량이 공항의 포장에 어떻게 분포하는지는 착륙장치의 형태와 배치에 밀접하게 관련되어 있다. FAA에서는 항공기를 기어형태로 분류하여 포장설계 곡선에 이용한다.

기어형태에 의한 분류

a. 단차륜 항공기

b. 듀얼기어 항공기

 

 

c. 듀얼텐덤기어 항공기

d. 광동체 항공기

(2) 포장평가

비행장 포장의 하중지지력에 영향을 주는 주된 요인은 포장구조의 두께 및 강도, 항공기에 의해 부과된 하중의 분포, 하중의 의 반복횟수 등이다. 이 중 하중의 분포는 착륙장치의 형태 및 배치에 따라 크게 영향을 미치며, 각 항공기는 기어형태와 착륙장치배치에 의햐 각 그룹으로 분류된다.

 

. 결론

항공기의 분류는 그 용도에 따라 다양하므로 설계목적에 따라 적절한 방법을 선정하여 분류하여야 한다. ICAOFAA의 분류도 서로 상이하므로 각 설계목적별로 적절한 방법을 선정하여 각 설계인자를 결정하는 것이 무엇보다도 중요하다.

반응형

'도로및공항 기술사 > 공항' 카테고리의 다른 글

항공교통 관제시의 ILS와 MLS  (0) 2020.03.14
RNAV : 지역항법(Area Navigation)  (0) 2020.03.14
공항의 등급  (0) 2020.03.14
공항시설  (0) 2020.03.14
대규모 공항 프로젝트를 위한 재원조달 방안  (0) 2020.03.02
728x90
반응형

. 개요

활주로 길이결정은 공항설계에 있어서 가장 중요한 과정중의 하나이며 활주로 길이는 공항의 크기와 건설비, 항공기의 운용방식에 영향을 미친다. 활주로는 현재 뿐만 아니라 장래 이용 예상되는 항공기가 안전하게 이, 착륙할 수 있도록 하여야 한다.

 

. 활주로 길이 결정에 영향을 주는 인자

1) 항공기 최대 이륙중량

(1) 항공기의 중량구성

탑재연료

a. 소비연료 : 목적지까지 소비될 연료 (Burn-out Fuel)

b. 예비연료 (Reserve Fuel)

- 항로의 기상상태와 관제조건 등의 변동을 고려한 연료 (Contingency Fuel)

- 목적지 상공에서 대체비행장까지 비행할 수 있는 연료 (Alternate Fuel)

- 상공에서 30분간 대기할 수 있는 연료 (Holding Fuel)

- 기타 여분의 연료 (Extra Fuel)

 

 

탑재가능량 (ACL : Allowable Cabin Load)

항공기중량 (Operating Empty Weight)

이륙중량 (Take-off Weight)

탑재연료, ACL, 항공기중량, 전부를 포함한 중량

착륙중량

이륙중량에서 소비연료 (Burn-out Fuel)를 감한 중량

무연료중량 (Zero Fuel Weight)

(2) 취항이 예상되는 항공기의 최대이륙중량이 활주로 길이 산정의 전제가 된다. 각 항공기 제작사는 특정항공기에 대해서 소요 이륙거리를 제시한다. (Flight Manual)

 

2) 기온

고온에서는 공기의 밀도가 낮아지므로 항공기 추진력이 더욱 적어지므로 더 긴 활주로 길이가 요구된다.

ICAO에서는 표준 대기온도에서 1증가시 마다 활주로 길이 1% 증가를 권고

 

 

3) 활주로의 구배 (Runway Gradient)

상향구배의 활주로는 수평이나 하향구배 보다 더 긴 길이가 요구된다.

유효 활주로 구배는 활주로 중앙선의 정점과 가장 낮은점의 표고차이를 활주로 길이로 나눈 값을 말하며, 유효활주로 구배 증가시마다 활주로 길이를 증가시킨다.

 

4) 공항의 표고

타 조건이 같을 때 공항의 고도가 높을수록 더 긴 활주로가 요구된다.

고도에 따르는 활주로 길이의 증가는 선형비례가 아니며, 고도가 높을수록 증가하는 비율이 더욱 크다. 그러나 대부분의 장소에서 표고 1000ft7%의 비율로 활주로 길이를 증가시킨다.

 

. 활주로 길이의 결정방법

1) 활주로 기본길이를 보정하여 구하는 방법

(1) 기본 개념

표준대기(1atm, 15의 기온, 수면위 무풍상태)에서 구배 0인 경우에 있어서 공항이용 예상항공기가 이착륙에 필요한 길이인 활주로 기본길이를 공항의 표고, 온도, 활주로 구배 등에 의하여 보정하여 소요 활주로 길이를 구한다.

대개 피스톤 엔진기에 주로 사용

 

(2) 보정

표고에 의한 보정

온도에 의한 보정

구배에 의한 보정

 

 

2) 착륙 성능도표를 이용하는 방법

(1) 기본 개념

주요 항공기의 운항 매뉴얼에 도표가 주어지므로 이를 이용하여 구함

일반적으로 제트 및 대형기에 주로 적용

(2) 방법

활주로를 이용할 것으로 예측되는 특정한 설계항공기의 선택

공항에서의 대기온도 결정

공항의 표고결정

대상항공기에 의한 가장 긴 논스톱거리 결정

계산이나 표에 의거 대상항공기의 이착륙 중량 결정

상기의 input data를 가지고 항공기 메이커가 제공한 그래프나 도표를 이용하여 필요한 활주로 길이 결정

착륙을 위한 활주로 길이가 별도로 결정되나 이중 더 큰 값을 갖는 길이를 공항활주로 길이로 선택

공항의 활주로 유효구배에 대한 보정

 

반응형
1
반응형

+ Recent posts