728x90
반응형

. 개 요

1. 자동차가 곡선부를 주행할 때 곡선반경이 작으면,

핸들조작이 곤란하고, 주행 쾌적도가 떨어질 뿐만아니라

특히 고속주행도로(고속도로)의 경우 사고위험이 크다.

2. 설계속도가 높아짐에 따라 최소곡선반경도 커지고, 편경사도 커지나,

타이어의 노면마찰계수(f)는 감소하게 되으로,

선형설계시 이의 상관관계를 고려하여 최소곡선반경(R)1.5배 이상의 값을 적용하고,

적절한 편경사를 설치하여 자동차의 안전성과 쾌적성을 도모해야 함.

3. 여기서는 각 요소들의 결정기준과 곡선반경과 편경사의 상관성에 대하여 기술하기로 한다.

 

. 각 요소들의 결정

1. 최대편경사의 결정

. 결정요소

1) 주행의 쾌적성

2) 지형조건

3) 지역성(도시부, 지방부)

4) 기상여건(다우, 다습, 적설, 결빙 등)

5) 자전거등의 분리 여부

 

 

. 우리나라의 최대편경사 적용

: 위의 조건들에 따라 다르나, 일반적으로

- 고속도로의 경우 본선에서 최대편경사 : 6%

연결로 " : 8%를 적용하고 있다.

2. 횡방향 미끄럼마찰계수(f) 결정

. f노면과 타이어의 횡방향 마찰계수인 동시에

차안의 사람이 느끼는 횡방향 가속도의 크기를 나타낸 것

. f실측치로부터 구할 수 있으며, 값은 쾌적성을 고려하여 결정한다.

- 쾌적성을 고려하는 경우 : 마찰계수(f) = 0.10.15

가속도(g) = 0.30.6m/sec2이상

 

3. 최소곡선반경 결정



. 평면곡선 반경과 편경사와의 상관성

1.개요

: 최대편경사최소곡선반경이 정해지면,

곡선반경에 대하여 어느정도 편경사를 설치할 것인가의 문제가 생긴다.

, 설계속도에 따른 곡선반경에 대해 설치해야 할 편경사를 규정해야 한다.

2. 곡선반경과 편경사와의 관계


. 곡선반경(R)에 대하여 마찰계수(f)를 결정하면, 편경사(i)를 구할 수 있다.1,000 2,000 3,000 (R)

. 곡선반경이 작아짐에 따라 i+f의 값은 급격히 증가한다.

. R이 작을 경우, 설계속도가 커지면 속도증가에 대한 i+f 값의 증가량도 커진다

. R이 작은 경우, 약간의 속도증가에도 쾌적성에 큰 영향이 있게 되며,

R이 큰 경우, 쾌적성을 유지할 수 있는 속도의 범위가 넓어져 간다.

3. 곡선반경과 편경사, 설계속도와의 상관성


. 설계에의 적용

1. 최대, 최소 편경사의 적용

 

 

. 최대 편경사(Smax)

1) 해당 설계속도의 최소곡선반경 범위내에서 적용

2) 적설한냉지역, 도시지역의 경우 : Smax = 6% 적용

그 외지역 : Smax = 8% 적용

3) 우리나라 고속도로의 경우

- 본선 Smax = 6% 적용, 연결로 Smax = 8% 적용

. 최소 편경사(Smin)

1) 편경사를 생략할 수 있는 크기의 곡선반경 범위내에서 적용

2) Smin = -2% , 표준횡단경사 임.

2. 편경사를 생략할 수 있는 곡선반경

: R V2 / 127(i+f)에서 f=0.035적용

설계속도V

120(km/hr)

100(km/hr)

편경사를 생략할 수 있는 곡선반경

7,500

5,000

 

. 결 론

1. 곡선반경과 편경사설치는자동차의 주행안전성 확보와 운전자의 쾌적성 유지를 위하여 설치한다는 원칙이 준수되어야 한다.

2. 실제 주행속도는 설계속도의 70-90% 정도인 점을 감안하여 주행속도와 이에 따른 곡선반경에 대해 편경사를 설치하여야 한다.

3. 고속도로 설계는 표준화되어 큰 무리가 없으나, 그 외의 도로는 실제 편경사 설치시 잦은 오류가 발생되고 있는 실정이므로, 이에 개선노력이 필요하다.

4. 추후 개선방안

: IC 설계시 본선과 연결로 접속부의 편경사 접속설치

- 곡선반경별 편경사 접속설치 기준은 어느정도 정립되어 있으나,

- 본선편경사와 연결로 편경사의 접속부처리에 대한 명확한 기준이 정립되어 있지 않으므로 이에 대한 명확한 기준정립이 필요.

반응형

'도로및공항 기술사 > 기하구조' 카테고리의 다른 글

설계구간(2)  (0) 2020.07.22
설계속도  (0) 2020.07.22
평면선형과 종단선형의 조합  (0) 2020.07.22
종단선형 설계  (0) 2020.07.22
부가차로  (5) 2020.07.20
728x90
반응형

. 개 요

1. 시거란 운전자가 자동차 진행방향의 전방에 있는 장애물 또는 위험요소를 인지하고 제동을 걸어 정지하거나 장애물을 피해서 주행할수 있는 길이를 말한다.

2. 시거는 차로 중심선에 따라 측정한 길이로 주행상의 안전과 쾌적성 확보에 매우 중요한 요소이다.

3. 시거에는 정지시거, 피주시거, 앞지르기시거가 있으며 이중 정지시거가 도로 기하구조의 주요 요인이다.

 

. 정지시거

1. 개 요

1) 정지시거는 전방의 동일 차로상에 고장차등의 장애물을 인지하고 제동을 걸어 정지하기 위해 필요한 길이

2) 차로 중심선상에서 눈의 높이 1.0m, 물체의 높이 15cm를 투시할수 있는 거리

2. 정지시거의 계산

1) 정지시거는 판단시간, 반응시간, 제동시간의 3요소를 고려하여 산정

2)

 

 

여기서, D : 정지시거(M) V : 설계속도(Km/hr) g : 중력가속도(9.8m/sec2)

t : 반응시간(2.5) : 위험요소를 판단하는 시간 1.5, 반응시간 1

3. 정지시거 확보방안

1) 중분대 폭원 증대

2) T/L내에서의 시거 확보

3) 노면의 종방향 미끄럼 마찰계수 개선

4) 안전시설 설치로 시거 확보

5) 시거 확보의 계산 정지시거의 최소 확보길이

 

4. 문제점 및 개선방안

문 제 점

개 선 방 안

설계속도(:V=100km/hr 적용시)에 따른 최소평면곡선반경(“규칙”, R=460m)과 고속도로나 국도의 중분대 설치시 중분대측 정지시거 확보에 필요한 최소 평면곡선반경(R=1,500m)과의 차이가 커 산지부가 많은 우리나라의 지형여건 및 노면배수, 추가용지 확보 문제등으로 중분대측 정시시거 확보가 현실적으로 불가능함

시거확보를 위한 필요 평면곡선반경(:V=100km/hr)

D:시거(200m), R:평면곡선반경, M:중앙종거(3.3m, 중분대 기준)

필요곡선 반경 : R = 1,500m

"규칙18조의 최소 평면곡선반경 길이는 편경사에 따른 주행차량의 구조적 안전성과 쾌적성만을 고려한 값으로, 산지부가 많은 우리나라의 지형여건상 정지시거 확보가 곤란한 경우가 많아, 부득이 정지시거 확보가 곤란한 구간에는 보조표지판(”안전거리 확보“), 미끄럼방지시설, 도로반사경 추가설치등 예외규정 신설 및 도로교통법 시행규칙 제12조 제2항의 이상기후시 감속규정에 따라 당해 도로 설계속도의 20%를 감한 속도에 소요되는 정지시거로 적용할 수 있는 단서조항 신설이 요구됨

 

 

 

. 피주시거

1. 동일 차로상에 고장차등이 있는 경우에 인접차로로 피하려고 할 때의 시거

2. 각각의 자동차가 반경 R로 피주하여 서로 평행한 위치로 오기까지의 거리

3. 피주시거는 일반적으로 정지시거가 확보되면 충분하다.

 

. 앞지르기 시거

1. 개요

1) 앞지르기 시거는 저속차량을 앞지르기를 하기 위하여 필요한 시거를 말한다.

2) 차로 중심선상에서 눈의 높이 1.0m, 물체의 높이1.2m를 투시할수 있는 거리

앞지르기 시거

2. 앞지르기 시거의 계산

1) 앞지르기 하는 차량이 가속하면서 대향차로로 진입하기 직전까지의 주행거리(d1)

여기서, VO : 앞지르기 당하는 차량속도(KM/hr)

t1 : 가속시간(2.94.5), a :평균가속도(M/sec2)

2) 앞지르기 시작부터 완료시까지 앞지르기 하는 차량의 주행거리(d2)

여기서, V : 추월차량의 대향차로에서의 속도(KM/hr)

t2 : 추월시간(9.310.4)

3) 앞지르기 완료후의 앞지르기 하는 차량과 대향차량과의 여유거리(d3)

d3 = 15 70M

4) 앞지르기 완료시까지의 대향차량의 주행거리(d4)

3. 앞지르기 시거의 계산값

1) 전 앞지르기 시거 :

2) 최소필요 앞지르기 시거 :

4. 앞지르기 시거의 적용

 

 

. 평면, 종단, 횡단구성 동시검토, 규정 준수, 여유있게 설계 13분간 주행후 1회 앞지르기 확보

. 전구간 30%확보, 노선전체 균등 분포

. 미 확보시 양보차로 검토최소 앞지르기 시거

 

. 시거의 확보

시거 확보 폭

1) 시선과 대상물이 모두 동일한 원곡선내에 있고, 평지부에 있는 경우

여기서, M : 시거확보 폭(M), D : 시거(M), R : 곡선반경(M)

2) 직선과 원 또는 클로소이드가 연결되어 있는 경우 : 도식적으로 구함

3) 평면 곡선과 종단곡선이 겹쳐지고 있는 경우 : 도식적으로 구함

 

2. 시거 확보의 방법

1) 원곡선 반경의 조정과 종단경사 완화

2) 길어깨 또는 중앙분리대의 확폭

 

. 결 론

1. 정지 시거는 전체도로 구간에서 100% 확보

2. 앞지르기 시거는 전체 도로 구간에서 추월기회 백분율 30%(최소 10%) 이상을 확보하고 한구간에 집중되지 않도록 한다.

3. 추월기회 백분율 30%이상 확보가 불가피할 경우 최소 10%이상 확보하여야 하고 양보차로를 검토한다.

4. 앞지르기가 미확보되는 지역에서는 양보차로 또는 Turn-Out 설치검토

5. 철도건널목구간 에서는 가시구간 최소길이 확보가 필요

가시구간 길이 : 건널목에서 자동차가 완전하게 통과하기 위하여 선로 중심선을 볼 수 있는 거리를 말한다.

6. 짧은 터널일 경우에는 노면 습윤상태의 마찰계수를 적용해야 할 것으로 판단됨.

7. 조측에 핸들이 있으므로 중분대측이 시거 불량이 초래되므로 설계 계산치보다 여유있게 산정

8. 정지시거의 계산시에도 내리막 및 오르막 경사의 보정을 적용해야 할 것으로 판단

반응형

'도로및공항 기술사 > 기하구조' 카테고리의 다른 글

양보차로  (0) 2019.12.08
오르막 차로  (0) 2019.12.08
완화곡선  (4) 2019.12.08
횡방향 미끄럼 마찰계수(f)  (0) 2019.12.07
편경사의 배분 및 접속설치  (0) 2019.12.07
1
반응형

+ Recent posts