728x90
반응형

. 서 론

1. 국가경제발전과 대도시의 인구집중에 의한 자동차 교통의 폭발적인 증가는 교통혼잡, 교통사고의 다발을 일으켰고 이에 따라 국가의 경제적, 사회적 손실이 막대하다.

2. 따라서 대도시 교통문제 해결을 위해서 대량수송수단인 지하철도 중요하지만 자동차 교통의 비율을 고려할 때, 도시 고속도로의 건설은 매우 시급한 대책이다.

3. 도시 고속도로는 도시의 토지이용, 교통특성, 도로의 특성상 고가구조의 채택이 불가피한 곳이 많으나, 도시라는 특수성 때문에 설계시 고려해야 할 사항이 많다. 이에 대해 설계상의 대책을 기술하고자 한다.

 

. 도시 고가 구조 설계상의 고려사항

1. 교통특성

Peak 교통량 처리문제, 설계속도, 주행특성을 고려

2. 교량 자체로서의 미관

3. 도시 내부에서의 교량과 도시 경관과의 조화

4. 시공중 교통처리 문제

5. 환경상의 대책

6. 공기

7. 장애물 처리에 관한 대책

8. 경제성 검토

 

 

. 설계상의 대책

1. 교통 특성

1) 계획목표년도의 교통량, 계획, 서비스수준등을 고려하여 충분한 교통 용량을 갖도록해야 한다.

2) 지형, 구조형태, 교통량에 부합되는 설계속도를 결정한다. 또 출입 제한여부도 결정해야 한다.

2. 교량 자체로서의 미관

1) 상부구조형식은 지역의 성격에 맞취 Simple한 구조 또는 지역의 특성을 표출할 수 있는 형식으로 한다.

2) 경간은 하부 제약조건에 크게 작용되나 미관과 경제성을 고려하여 결정한다.

3) 교량의 형태 결정시는 다음에 유의한다.

Total Design 개념으로 주 Girder와 도로면의 상관관계로부터 하로, 중로, 상로여부를 결정한다.

Hunch는 응력상 유리할 뿐만 아니라 미관상으로도 유리하도록 Slender하게 처리한다.

교량전체로서의 연속성을 갖도록 한다.

하부공간 높이와 Girder 높이의 비를 크게 하여 날씬하게 보이도록 처리한다.

경간장과 Girder높이의 비, 경간장과 교각 폭의 비를 고려하여 미적인 처리를 한다.

교대와 교각은 녹물, 백화현상, 빗물 등이 흐르지 않도록 하고, 필요시 표면처리를 실시한다.

부속시설과의 관련성에 유의하고 부속시설이 얽히지 않도록 조치한다.

3. 교량과 도시 경관과의 조화

1) 무한정 늘어진다는 개념을 없애도록 기존 구조물과 조화시킨다.

2) 단독적인 형태로서 표출되도록 조명, 주변조경등으로 처리한다.

4. 교통 처리 문제

1) 공사 기간동안 인근 도로시설이나 전체 도로망에 미칠 영향을 검토하여야 한다.

2) 영향이 있을 때의 대책으로 하부공간에 영향을 미치지 않는 공법선정, 공기단축이 가능한 공법을 선정하거나, 임시 우회도로의 설치 가능여부를 검토한다.

 

 

5. 환경상의 대책

1) 생활환경에의 영향을 간소화할 수 있도록 무소음, 무진동 공법 채택, 야간작업 금지등을 고려

2) 사용중의 대책으로는 방음벽, 방음림 등의 조성

6. 공기상의 제약

공기의 급속성이 가능한 공법 선정

7. 장애물 처리에 관한 대책

1) Sheet pile, 지중연속벽등에 의한 차단공법

2) 주입공법, 동결공법, Chemico-pile과 같은 지반 강화공법

3) Under Pinning에 의한 기존 구조물 강화공법을 고려하고 계측을 계획하고 안전한 공사가 되도록 한다.

8. 경제성 검토

1) 투자비와 편익을 산정하여 경제성을 분석한다.

2) 경제성분석방법은 주로 편익분석법을 적용한다.

 

 

 

. 우리나라 도시 고가 도로의 문제점 및 개선방안

문 제 점

개 선 방 안

1. 경관설계 무시

(도시장애물화)

ㆍ고가교에 대한 설계지침의 정립

ㆍ기능에 적합한 미적조형물로 도시경관 조화

2. 유지관리 소홀로 도시미관 저해,

사용성 저하

ㆍ체계적 유지보수 System으로 공용성 유지

ㆍ정기적인 유지관리 시행

3. 고가교의 신축이음부 파손

ㆍ신축이음부의 효율적 유지보수 기법개발

 

 

. 결론

1. 고가구조의 유지관리를 위한 신축이음부의 문제점 해결 방안 마련

2. 연속교 형식에 있어 기초변형이 작은 공법의 연구 개발

3. 무소음, 무진동 공법 및 급속시공방법 개발

4. 경관설계지침의 정립등이 필요

 

반응형
728x90
반응형

. 개 요

1. 독일의 Dywidag사에서 개발하여 일명 Dywidag공법 이라고도 하며,

2. 교각 시공후 교각상에서 Form Traveller를 이용하여 좌우로 평형을 유지하면서 1 Segment씩 순차적으로 시공하는 것으로

3. 깊은 계곡, 유량많은 하천이나 교통량 많은 도로횡단시 전천후 시공이 가능한 공법으로 품질관리가 용이하고 경제적인 공법이다.

 

. FCM공법의 종류

1. 연속보 형식 : 주행성이 좋고 Creep에 의한 처짐 적다(강동대교)

2. Hinge: 주행성이 좋지않고 Creep에 의한 처짐 크다

3. Rahmen: 원효대교, 청풍교

 

 

. FCM공법의 특징

1. 깊은 계곡, 유량 많은 하천의 장대교량에 유리

2. 2 5 Block으로 분할시공으로 형고 변화가능

3. Form Traveller에 의한 시공으로 전천후 시공 가능

4. 고강도 콘크리트(σck=400kg/이상) 타설로 품질관리가 용이하고 시공정도 높다.

 

. FCM의 시공순서

 

1. Start Segment 시공

2. 좌우 대칭 Segment 시공

3. Key Segment 시공

 

. FCM공법의 설계 시공시 고려사항

1. Camber Control(처짐관리)

 

1) Camber는 콘크리트 타설전후의 Level차이를 계산하여 거푸집 설치시 미리 감안 조정하는 상향의 처짐값을 말한다.

2) Camber량 해석법 : RM-Space Program, ACI-Code Model

2. 지점부에 발생되는 불균형 모멘트의 해소

3. 응력의 재분배

4. Key Segment의 시공

5. 시공시 Concrete 타설순서에 유의 : 아래서 위로 타설

 

 

. PSC Box Girder교량의 가설공법 비교

구 분

FCM

ILM

MSS

최적 경간장

150 160m

60m

70m

시공 속도

10/seg

2/seg

3/seg

경제성

중간

중간

저가

시공적용

원효대교

황산대교

노량대교

 

 

. 결론

1. FCM공법은 깊은 계곡이나 유량 많은 하천등의 장대교량 가설에 유리한 공법으로 Form Traveller에 의해 전천후 시공이 가능한 공법이다.

2. 그러나 설계 시공 관리시 다음과 같은 문제점에 유의하여 대책을 수립하여야 한다.

1) 응력 재분배 문제

2) Camber Control(처짐 관리)

3) Key Segment의 연결

4) 가고정시설(Temporary Support)의 설치

 

 

 

반응형
728x90
반응형

. 개 요

1. PSC교의 가설공법에 대해서는 여러 가지로 분류할 수 있으나 크게 현장타설공법과 Pre Cast 공법으로 나눌 수 있으며, 또한 FSM, FCM, ILM, MSS과 같은 현장타설공법과 Pre Cast Girder공법 및 Pre Cast Segment공법등이 있다.

2. 이러한 여러 종류의 가설공법 중 그 적용은 교량의 가설위치, 교량형식, 경간장 및 안전성, 시공성, 경제성등을 고려하여 적합한 공법을 선정해야 한다.

 

. 교량 가설공법 종류 및 적용

1. 강교

1) 벤트식 공법

지보공 Bent를 가설위치에 설치하여 교체부재를 조립하는 방법

단순형교, 연속형교, 라멘교에 많이 사용

2) Cable식 공법

교체를 Cable에 지지하면서 가설하는 공법

형하고가 높은 계곡 및 수심이 깊은 하천에 단지간의 Langer Lohse Arch,  Truss교 가설에 유리

 

 

3) 가설형 공법

교량가설시 Bent 설치, 크레인 진입이 곤란한 경우 적합

단순교, 연속형교, 곡선형교에 적합

4) 밀어내기 공법(I.L.M 공법)

가설지점 부근에서 조립된 상태로 밀어넣거나 보내는 방법

형하에 주요 교통기관이나 하천으로 Bent 설치가 곤란한 경우

추진코, 중력식, 가설형식, 대차식, 대선식, 이동벨트식

5) Cantilever식 공법

부재를 Cantilever로 조립하면서 가설하는 공법

깊은 계곡, 수심이 깊은 하천등의 장대교 가설이 유리

사용장비는 크레인과 Cable

단순 트러스, 연속 트러스에 적합

6) 일괄 가설 공법

교체 1경간을 한번에 가설하는 공법

단순형교에 적합 - 대용량의 크레인 필요

 

 

2. 콘크리트교

1) 지보공법(동바리공법) : F.S.M(Full Staging Method) 공법

일반적으로 가장 많이 사용

교면고가 높지 않고 연약지반 아닌 곳

현장타설 콘크리트교 - 단순 슬래브교, 연속 슬래브교, 라멘교

2) Precast 블록 공법

P.C제품 공장 또는 가교 현장 부근 제작장에서 Segment or Block 제작, 가설지점에 운반, 결합하여 교량을 가설하는 공법

교량규모가 클 때 경제적, 공장생산으로 품질관리, 공기 단축, 급속시공 가능

건조수축, Creep에 의한 가설 후 변형 적다

3) Precast(Beam) 가설 공법

I, T, P.C Beam, Box등을 가설 지점에 크레인 등으로 가설하는 공법

교면고 20m이하가 적합, 공기단축, 급속시공 가능

4) Cantilever식 공법 : F.C.M(Free Cantilever Method) 공법

교각에서 좌우로 현장타설 또는 Precast Block을 접합하여 가설하는 공법

지보공 필요 없으며 거푸집차(Form Traveller)가 필요

깊은 계곡, 깊은 하천등 형하공간이 높을 때, 지보공 또는 Bent를 설치할 수 없을 때, 연약지반으로 지보공 불가능시, 자연경관 보호시 사용공법

사장교, 연속상자형교, Arch교 등 지간 100200m 정도가 최적

Drwidag, P & Z 공법, Precast Block공법이 있다.

5) 연속압출공법 : I.L.M(Incremental Launching Method) 공법

교대후방에 설치된 작업장에서 1020m 정도의 일정한 길이를 가진 Segment를 제작, 교축방향으로 밀어 점차적으로 교량을 가설하는 공법

동바리 시공이 비경제적인 계곡, 하천 횡단지점, 교통로(도로, 철도) 횡단시

 

 

6) 이동식 비계공법 : M.S.S(Movable Scaffolding System) 공법

거푸집이 부착된 특수한 이동식 비계이용하여 한경간씩 시공

연속된 장경간의 교량에서 거푸집, 지보공, 조립해체없이 이동전용

가설속도 빠르고 콘크리트가 제위치에서 타설됨

 

. 결론

1. 장대교량 가설공법은 P.S콘크리트를 이용한 P.S.C Box Girder공법이 많이 이용되고 있다. P.S.C공법은 R.C교에 비하여 교량 경간의 장대화가 가능하고 공장 제품화가 가능하며 경제성, 내구성 및 미적외관이 양호하다.

2. 재료적 측면에서는 강교에 비해 부식의 염려가 작고 유지관리가 양호한 Concrete교가 많이 사용되며 가설이 용이하고 경제적인 P.S.C Girder로 선정함이 장대교량의 경제성, 내구성 및 주행성측면에서 유리한 공법이다.

 

 

 

 

반응형
728x90
반응형

. 개 요

1. 교량은 도로에 있어서 중요한 역활을 담당하며 특히, 우리나라는 험준한 지형에 하천이 산재되어 있어 도로건설에 따른 교량건설은 필수적이며 교량의 계획시는 도로의 선형을 우선적으로 고려하고, 구조물로서의 외부적 조건 즉, 길이, 지간, 형하공간 등이 적합하고

2. 주변경관의 조화 등을 고려하여 시공성 및 유지관리가 용이하도록 계획, 설계되어야 한다.

 

. 교량형식의 선정절차


. 교량 계획을 위한 조사

1. 예비조사

 

 

1) 자료조사

2) 현지답사

2. 본조사 : 예비조사에 의해 계획된 교량의 상세 설계를 위해 실시

1) 교량의 위치 선정시 고려 사항

하상 및 양안의 지질이 양호한 곳

하상 및 유수가 안정된 곳

급적 직교가 되도록하고, 과도한 사교나 곡선교가 요구되는 지점을 회피한다.

주위경관과 조화가 가능한 곳

 

2) 하부구조 조사

지형조사 : 가교지점의 지형 및 상황파악

지반조사 : 지질조사, 토질조사, 지하수조사

하천조사 : 이수상황조사, 하상조사

시공조건조사 : 기상조사, 주변환경조사, 작업환경조사

3) 상부구조조사

지형조사 : 가교 위치, 교량길이, 경간분할 결정

교차도로조사 : 교량 연장, 경간장, 시공방법 판단

 

 

하천조사 : HWL, LWL

기상조건 : 온도변화, 풍하중, 지진하중의 결정

교량의 첨가물 조사 : 상수관, 하수관, 전력, 통신관

부식조사 : 기존 구조물 부식상태

기타조사 : 재료, 시공, 신공법, 관련기준 등

 

. 설계하중 및 교량하부공간 결정

1. 하중의 종류

 

 

주하중(P)

부하중(S)

주하중에 상당하는 특수하중(PP)

부하중에 상당하는 특수하중(PA)

고정하중(D)

풍하중(W)

설하중(SW)

제동하중(BK)

활하중(L)

온도변화영향(T)

지반변동의 영향(GP)

가시설하중(ER)

충격(I), 토압(H), 수압(F)

지진영향(E)

지점이동의 영향(SD)

충돌하중(CO)

프리스트레스(PS)

 

파압(WP)

 

콘크리트 크리프 영향(CR)

 

원심하중(CF)

 

 

콘크리트 건조수축 영향(SH)

 

 

 

부력 또는 양압력

 

 

 

2. 활하중 : 자동차 하중 즉, 표준트럭하중(DB하중), 차로하중(DL하중), 보도등의 등분포 하중 및 궤도의 차량하중이다.

1) DB하중의 크기

교량등급

하중

W(tonf)

총중량

1.8W(tonf)

전륜하중

0.1W(kgf)

후륜하중

0.4W(kgf)

1등교

DB-24

43.2

2,400

9,600

2등교

DB-18

32.4

1,800

7,200

3등교

DB-13.5

24.3

1,350

5,400

 

 

2) DB DL하중

3. 설계기준자동차 하중

구 분

자동차 전용도로

기타도로

표준트럭하중

DB-24, DB-18

DB-24, DB-18, DB-13.5

차로하중

DL-24, DL-18

DL-24, DL-18, DL-13.5

 

 

4. 교량 하부공간

1) 하부 공간 결정시 고려 요소

교통의 종류와 하부 공간 이용 규모

하천의 제방높이

계획 홍수량 및 Back Water

2) 하부공간 확보

천횡단교량 : 계획제방고 이상, 계획 홍수량에 따른 적정 지간장 및 여유고 확

도로, 철도횡단교량 : 도로철도의 폭원구성 및 시설한계 고려

계획 홍수량 여유고

계획 홍수량(/sec)

여 유 고(m)

200 이하

0.6 이상

200 500

0.8 - 1.0

500 1,500

1.0 - 1.2

1,500 3,500

1.2 - 1.5

3,500 10,000

1.5 - 2.0

 

 

. 경간 분할

1. 미관상의 경간 분할

1) 연속교의 경우 중앙경간을 측경간 보다 크게

- 3경간시(3 : 5 : 3), 4경간시(3 : 4 : 4 : 3)

2) 교량 길이가 길고, 지형이 평탄한 경우 : 등경간

3) 접속교와의 연결은 연속적인 변화가 되도록

4) 중앙경간을 측경간 보다 크게하면 안정감이 있다.

- 황금분할의 경우(1 : 1.618)

2. 치수상의 경간 분할

1) 유속 및 하상이 급변하는 곳에 교각설치 회피

2) 저수로 지역은 경간을 크게 분할

3) 교각 설치로 인한 수위 상승 및 배수 검토

4) 하천 협소부 교각 본수 축소

5) 유로가 일정치 않은 경우 장경간

6) 동일하천에 교량 평행시 동일 경간 분할 및 하나씩 건너뛰는 형식

7) 유목, 유빙이 많은 하천 -> 교각 본수 감소

3. 경제상 경간 분할

1) 단위 길이당 공사비는 상부구조 공사비가 하부구조와 같거나 약간 클 때 최적

2) 기초지반 불량시 장경간, 양호시 단경간이 유리

 

 

. 교량 형식 결정

1. 상부구조 형식결정

1) 교량 형태

종단 경사는 인접도로와 연속되게 쳐저보이지 않도록

노면과 상부구조는 조화되게 계획, 설계

경간장(L)과 상부구조 높이(H)의 비율 검토

통과높이(H)와 상부구조 높이(h)의 비율 검토

교각은 경간장(L)과의 비율을 고려 검토

2) 주행성을 위해서는 연속교가 유리

3) 산간지방에서는 단순한 구조형식으로 상로교가 좋으며

4) 유적지는 석조arch 등이 좋다.

5) 지반이 양호한 지역은 archrahmen

6) 유지관리면에서 강교보다 Concrete교가 유리

2. 하부구조 형식 결정

1) 하부구조 형식은 상부구조 형식의 특징, 상부공의 가설공법 등 상부구조 계획과 서로 연관시켜 구조적 안전성, 경제성, 교량 입지조건에 따른 시공의 안전성 및 간편성, 교량미관의 유지관리 측면등을 고려하여 하부구조구체

 

 

(교대, 교각) 형식 및 기초 형식을 선정하여야 함

2) 기초 형식 결정시 중점 고려사항

하천변 지반 여건을 고려하여 선정

수상구간으로서 시공성이 용이하도록 선정

구조적인 안전성을 확보할 수 있도록 함

연속교로서 지진시, 온도변화에 의한 수평력 저항을 고려하여 선정

세굴등의 영향을 고려하여 공법을 선택

유수방향을 고려하여 유수저항계수가 작은 단면으로 선택

 

. 결 론

1. 도로의 노선 선정시 교량의 계획 및 설계를 고려하여 유리한 선형을 결정하고,

2. 교량의 계획시에 지반조사 및 가교조사등을 철저하게 실시하여 교량 상하부 구조형식을 결정하는 것이 가장 경제적이다.

3. 교량의 설계시 구조적 안전성, 경제성, 시공성 및 제반여건을 고려하여 교량의 지간, 교각의 위치와 방향, 하부공간의 확보등을 검토하여야 한다.

 

 

반응형

'토목시공기술사 > 교량' 카테고리의 다른 글

교량의 형식분류  (0) 2020.12.04
교량 및 터널 - 용어정리  (0) 2020.12.02
교량의 하부 구조  (0) 2020.10.05
도로교의 상부 구조 형식  (0) 2020.10.05
1
반응형

+ Recent posts